Stericated 6-cube


6-cube

Stericated 6-cube

Steritruncated 6-cube

Stericantellated 6-cube

Stericantitruncated 6-cube

Steriruncinated 6-cube

Steriruncitruncated 6-cube

Steriruncicantellated 6-cube

Steriruncicantitruncated 6-cube
Orthogonal projections in BC6 Coxeter plane

In six-dimensional geometry, a stericated 6-cube is a convex uniform 6-polytope, constructed as a sterication (4th order truncation) of the regular 6-cube.

There are 8 unique sterications for the 6-cube with permutations of truncations, cantellations, and runcinations.

Contents

Stericated 6-cube

Stericated 6-cube
Type uniform polypeton
Schläfli symbol t0,4{4,3,3,3,3}
Coxeter-Dynkin diagrams
5-faces
4-faces
Cells
Faces
Edges 5760
Vertices 960
Vertex figure
Coxeter groups BC6, [4,3,3,3,3]
Properties convex

Alternate names

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Steritruncated 6-cube

Steritruncated 6-cube
Type uniform polypeton
Schläfli symbol t0,1,4{4,3,3,3,3}
Coxeter-Dynkin diagrams
5-faces
4-faces
Cells
Faces
Edges 19200
Vertices 3840
Vertex figure
Coxeter groups BC6, [4,3,3,3,3]
Properties convex

Alternate names

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Stericantellated 6-cube

Stericantellated 6-cube
Type uniform polypeton
Schläfli symbol t0,2,4{4,3,3,3,3}
Coxeter-Dynkin diagrams
5-faces
4-faces
Cells
Faces
Edges 28800
Vertices 5760
Vertex figure
Coxeter groups BC6, [4,3,3,3,3]
Properties convex

Alternate names

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Stericantitruncated 6-cube

stericantitruncated 6-cube
Type uniform polypeton
Schläfli symbol t0,1,2,4{4,3,3,3,3}
Coxeter-Dynkin diagrams
5-faces
4-faces
Cells
Faces
Edges 46080
Vertices 11520
Vertex figure
Coxeter groups BC6, [4,3,3,3,3]
Properties convex

Alternate names

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Steriruncinated 6-cube

steriruncinated 6-cube
Type uniform polypeton
Schläfli symbol t0,3,4{4,3,3,3,3}
Coxeter-Dynkin diagrams
5-faces
4-faces
Cells
Faces
Edges 15360
Vertices 3840
Vertex figure
Coxeter groups BC6, [4,3,3,3,3]
Properties convex

Alternate names

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Steriruncitruncated 6-cube

steriruncitruncated 6-cube
Type uniform polypeton
Schläfli symbol t0,1,3,4{4,3,3,3,3}
Coxeter-Dynkin diagrams
5-faces
4-faces
Cells
Faces
Edges 40320
Vertices 11520
Vertex figure
Coxeter groups BC6, [4,3,3,3,3]
Properties convex

Alternate names

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Steriruncicantellated 6-cube

steriruncicantellated 6-cube
Type uniform polypeton
Schläfli symbol t0,2,3,4{4,3,3,3,3}
Coxeter-Dynkin diagrams
5-faces
4-faces
Cells
Faces
Edges 40320
Vertices 11520
Vertex figure
Coxeter groups BC6, [4,3,3,3,3]
Properties convex

Alternate names

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Steriruncicantitruncated 6-cube

Steriuncicantitruncated 6-cube
Type uniform polypeton
Schläfli symbol t0,1,2,3,4{4,3,3,3,3}
Coxeter-Dynkin diagrams
5-faces
4-faces
Cells
Faces
Edges 69120
Vertices 23040
Vertex figure
Coxeter groups BC6, [4,3,3,3,3]
Properties convex

Alternate names

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Related polytopes

These polytopes are from a set of 63 uniform polypeta generated from the BC6 Coxeter plane, including the regular 6-cube or 6-orthoplex.


β6

t1β6

t2β6

t2γ6

t1γ6

γ6

t0,1β6

t0,2β6

t1,2β6

t0,3β6

t1,3β6

t2,3γ6

t0,4β6

t1,4γ6

t1,3γ6

t1,2γ6

t0,5γ6

t0,4γ6

t0,3γ6

t0,2γ6

t0,1γ6

t0,1,2β6

t0,1,3β6

t0,2,3β6

t1,2,3β6

t0,1,4β6

t0,2,4β6

t1,2,4β6

t0,3,4β6

t1,2,4γ6

t1,2,3γ6

t0,1,5β6

t0,2,5β6

t0,3,4γ6

t0,2,5γ6

t0,2,4γ6

t0,2,3γ6

t0,1,5γ6

t0,1,4γ6

t0,1,3γ6

t0,1,2γ6

t0,1,2,3β6

t0,1,2,4β6

t0,1,3,4β6

t0,2,3,4β6

t1,2,3,4γ6

t0,1,2,5β6

t0,1,3,5β6

t0,2,3,5γ6

t0,2,3,4γ6

t0,1,4,5γ6

t0,1,3,5γ6

t0,1,3,4γ6

t0,1,2,5γ6

t0,1,2,4γ6

t0,1,2,3γ6

t0,1,2,3,4β6

t0,1,2,3,5β6

t0,1,2,4,5β6

t0,1,2,4,5γ6

t0,1,2,3,5γ6

t0,1,2,3,4γ6

t0,1,2,3,4,5γ6

Notes

  1. ^ Klitzing, (x4o3o3o3x3o - scox)
  2. ^ Klitzing, (x4x3o3o3x3o - catax)
  3. ^ Klitzing, (x4o3x3o3x3o - catax)
  4. ^ Klitzing, (x4x3x3o3x3o - cagorx)
  5. ^ Klitzing, (x4o3o3x3x3o - copox))
  6. ^ Klitzing, (x4x3o3x3x3o - captix)
  7. ^ Klitzing, (x4o3x3x3x3o - coprix)
  8. ^ Klitzing, (x4x3x3x3x3o - gocax)

References

External links